Machine learning approches and pattern recognition for spectral data
نویسندگان
چکیده
The adaptive and automated analysis of spectral data plays an important role in many areas of research such as physics, astronomy and geophysics, chemistry, bioinformatics, biochemistry, engineering, and others. The amount of data may range from several billion samples in geophysics to only a few in medical applications. Further, a vectorial representation of spectra typically leads to huge-dimensional problems. This scenario gives the background for particular requirements of respective machine learning approaches which will be the focus of this overview.
منابع مشابه
Classification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملSemantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملSpectral Clustering With
Clustering is a fundamental problem in machine learning with numerous important applications in statistical signal processing, pattern recognition, and computer vision, where unsupervised analysis of data classification structures are required. The current stateof-the-art in clustering is widely accepted to be the socalled spectral clustering. Spectral clustering, based on pairwise affinities o...
متن کامل